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ABSTRACT

The generalized action based on a generalized Lagrangian, the generalized gravitational field equation is derived,
a useful expression for the total energy-momentum tensor of gravity and matter is obtained by subjecting the
action to variation under space-time symmetry constraint. If the Lagrangian is linear the gravitational energy
disappears, but when the Lagrangian is quadratic the energy expression in the classical limit gives matter,
interaction and gravitational field energy.
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I.  INTRODUCTION

Einstein theory of General Relativity (GR) is one of the fundamental physical theories at the present time. It
describes a number of gravitational phenomena which agrees with astronomical observations [1]. Despite these
successes GR suffers from being isolated from the main stream of physics. In particular, the concept of energy in
GR differs radically from that in other physical theories. Namely it is devoid of the laws of conservation of
matter and field combined together, and even it lacks a full expression for the energy-momentum tensor of the
gravitational field [2]. Various schemes of modifications were put forward to account for this defect, but without
gaining any successes. This is because these models are not in conformity with the usual notion of energy in other
field theories [3,4].

On the other hand the generalized Einstein gravitational theories with additional R2 terms was used successfully to
explain the problem of the flat rotation curves of galaxies [4] and inflation in the early universe without introducing
fictitious scalar fields [S]. Moreover it was shown that these theories share GR all its successes in weak field.
in section (2), being motivated by the successes of Generalized Field Equation (GFE) [6], a generalized energy-
momentum tensor is derived from the generalized action of the GFE [7]. Unlike GR, where the energy momentum
tensor is obtained by subjecting the action to the variation with respect to the field variables [8], we get the energy
momentum tensor by varying the action w.r.t the coordinate variables. In this approach we relies heavily on the
deep connection between the symmetries in nature and the conservation laws, where the invariance of the action
under time and space transformations leads to conservation of energy momentum tensor[9].

By considering a simple non-linear Lagrangian which consists of quadratic term beside the linear one a useful
expression for the energy momentum tensor is obtained in section (3). When the Lagrangian is only linear in R
the gravitational part vanishes and this may explain why it is not possible to define gravity energy momentum
tensor within the framework of GR. The Hamilto- nian for the quadratic Lagrangian can give in the classical limit
to the matter energy, interaction and gravitational field energy.

IL. SPACE-TIME SYMMETRY AND THE GRAVITATIONAL ENERGY-MOMENTUM
TENSOR

The relation between the symmetry of space-time and the energy-momentum conservation is well known in

physics [1]. Itis generally accepted that the energy-momentum conservation law results from the invariance of

the action with respect to space-time coordinates transformation [2,3,4]. Let us consider the following action

integral
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f= /f(:z:", q.9q, 9r~q)d*z (1)
with f defined in equation (5.1) and
d*r = drodx,drodzs (2)

and where for brevity ¢ is set to denote the metric field g,,, The Lagrangian
density £ depends on the scalar curvature R, which in its turn depends on both
the field variable g,, and its first and second derivatives with respect to space-
time coordinates x#. The variation is considered with respect to the following
variables [5].

dog = ¢'(x)—q(x), with ,q'(z) = g(xz — ox)
dg = 4q'(z') —q(z) =4 (z') — q(z') + q(2") — q(x)
8q = Jbog+ Orgéz™ (3)
and
39rg = G (2') — Irg(x) = Ordgq
= Ox(d0g + Fpqdx”)
d9rq = doOrq + Oxp,qéx” (4)

where dpq is the total variation and dq is the local variation.
The variation 4/ is then given by

o = f(q + 60q,0rq + 000xq. Oryq + Gpdr,q)d 2’
RI

s /R £(a,050: Oy 'z (5)

with the Jacobian

(9') _ , . 052>

= —_ 6
@) ' (©)
and by employing partial differentiation this relation becomes
of of
0l = —00q + —— g0
/R[dq T g
2 1 A sz 4
— 00~ —|d™: 7
+ gt Il )
but of of of
dodrg = 0 dog] — 0 ] 8
0ng 0N A[aaw 0q] '\[6(9,\q] 0g (8)
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af ] % v SOFf
=—=—3& = 1] — ]
90 q Od,\‘yq d"[aa,\.,q oa—le] d*[aahq] Oa‘yq
_ s af p iy 2 af
= i 90 500‘1‘1] d‘r[‘soqd,\(aa,\‘yq)]
+ d,\.,ddf 50q (9)
Substituting this result in (7) yields
. & . O af 1
i = /[dq d,\ddq-l-d,\..,dd ]Joqd“‘.r
ofr
— /d\[ 50 +dd-, d-60q
o
_ 6,’;‘0,\60 00q + fox ] 1z, (10)
But by using the GFE the equation of motion yields [6]
o' af o Gf o= 8
— == —+O0y7—=0 11
doqg  0q < 00ag @ M 00xrq a5
Therefore (10) reduces to
of of
ol = O\[z5—009 + 550,90
/ )\[aa oq 99rq 0q
—
— 805 df Soq + foxN|dia (12)

Further we consider Poincare transformation of coordinates [5], i.e.
dxf = ¢’ = constant. (13)

where by (3) and (4) we have

doq = q'(z°) — q(2°) = q(x” — d2°) — q(z”)

= g(z*) — 02 0,q — q(2*) = —0zP0,q (14)
Therefore
0q = doq + Opqdx” =0 (15)
and
000~q = 0,00 = —0-,(02°0,q) = =620, q (16)
Hence

, of
61=/d,\([f5;}—%dpq+6$‘d,\ddf 9,

__9
dIxvq

Opyqlox?)d*z
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If we define the quantity within the bracket [ ] to be \/gV* therefore

o1 = [VaGalvavAd's

Since 41 and \/§d4;r are invariant, therefore the quantity within the bracket ()
is a tensor. Using the identity

oI = / VaVidiz (17)
and recognizing that in curved space
d'z = fod'z, ,—> ;
Therefore the energy momentum tensor T,;\ is given by
A_ JA — _Ag
Vi=J%=-T0zP (18)
and one have of of
—VaT) = fé) — 90n7 ——0d,q +5*0Add dpq
of
-0

by interchanging A with p, and setting

7 = o one gets

af af
— P = (3
VT fol — 30,4 ——d\q + 0, dd,,aqd'\q

of
dd,,,, q

Where from (17) V* is a tensor and hence T is a tensor. These equations
give a clear expression for the energy-momentum tensor density which normally
applies to field theories other than GR. Substituting

q = Guv (20)

in equation (19) the following expression for the energy-momentum tensor for
both metric and matter fields is obtained.

; af af
—JaTP = fs° e _
\/g A f A +6Ag# (d 66,)09’“, aapg’“’)
of
a,\a'g;u/ ddpg ’“’ (21)
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P o
NGy (0o aaa;;w B (')3,,:‘;;1./)
= 080p9uv (05 3312#" i 3(')dp£uu)
= 050,[9u.05 aa,ifg,,., . aé)apgp.,]
— 009,00, aa,igﬂu 5 aaa,,g,..,]
= 880p[9ur (95 6afafgw i 68?,,);,“, )
+ 5§guv% =~

The last term is simplified by using the equation of motion (11),i.e. the GFE,
and it takes the following form (7]

x M O )
= -0 (da Y
s T T .

of
By combining equation (22) with equation (21) the energy-momentum tensor

__9f
00,9,

. 23
T (23)

will be given by

a
VAT = S8+ g
: af af
e _
+ 080 [g,w (do 9o guv ApGpuv ]
p af
— o Guv 55— (24)
R BB

Assuming that f = /gL then expressing f through the derivatives with respect
to R leads to

. of af
6p —_ -_—
AOp[ 9y (0o O0po gy O0pgpw )]
of OR of OR

080,90 (0

OR 98p0 9y OR 00,9, )

= 080,940 (f'c"P7) — (f'cP)]

defining
opc . O
- 90pGpuv
and ,
P — oOR
00poGpv
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and the expression for the scalar curvature
R = g&’g,\ﬂ/ (8‘»\951) m 8—-,69,\,, _ avp\g&y + 36,,gA7)

+9ra (F:Argy) $a F:‘)',\Fg-y)

one gets
S oR
90 po Gpuv

= g"79"(058,8505 — 636,,606%

— 6;‘5,‘;656;{ + 5&‘5.’;6‘?55]

= %[gpﬂgﬂv = gnpgua = guogpp + gﬁwgm]

—_ g#lfgpﬂ = gl‘l’g”ﬂ (25)
also ||

P — OR »
90pguv

This means that the third term in the right hand side of equation (24) takes the
form

; 2 O af
of -
A0 [g‘w (do po Gy 00pGuv )]

( 6R 6 ! _uvpo P -
= 50, o 352 5 U/ ’] = 340, lgu Riac""? f']

IR B, 7o g
]

= JK [guucpupa (R;a:pf” + R;_.,R;,,fm)]

where the prime indicates differentiation with respect to R and by substituting
f = /gL one gets

\/géf [g“u(g;wgpo = g”pguo)(R;d:pﬁ” 5 2 R;OR:pcm)]
4,/g059"° (Rio:pL" + Rio RpL") — 609" (Rion L" + Ro RAL")
e \/§[£"(45§D2R — 9" Rixo)
+ L"(4639" R:pRio — 9°° RiaR:5))] (26)

=4 [g,,,,R.,,;pc""”"f” + g R

Then by using the relation(]

R,.6¢"" = —R"“dg,,
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OR _ Rudg™ _ 00 _

« _RFV
9w

oL OR Caﬁ)

res ( et
= 9uv0) (‘/5612 DGy ¥ DG

= 359 [—[Z'R"" - %g“"ﬁl = \/3%(2L - L'R)

Iguv
yields
of
‘Sig;w%
Similarly,
of
BN
Dpstw. I

@.JESR

d JdR

a_}f? mf%.wﬁi’

Lo 50z — ooy

§E5L057 + 848% 5207180 0O

f’%”g"" [0yagsn — y69an

Onagsy + OsnGar 0%

VIL'RSE. (27)
40

(C) Global Journal Of Engineering Science And Researches



[Abd-alla, 2(3): March 2015] ISSN 2348 - 8034

Combining equation (27),(26), and equation (24), the energy-momentum tensor
will have the form

T = 2L R85 — 3L6%5 + L"(g°° R.x.o — 46500°R)
+L"(g"" RAR., — 4089”° R.,R.,)

If we multiply both sides by g, the resulting equations become
Ton = 2g A RL —3g AL+ L' (Rqy:x —4g-2O’R) + L (R.AR.A — 4g-09”°" R, R.)
then interchanging pr with v yields
Tyw = 29, RL' — 3guu L + L" (R — 49,/ 0° R)
+L"(R..R,, —49,.9"°R.,R,;) (28)
This expression can be simplified by using the GFE []

1
L"(Ru R, — gug” R,R.,)+ L' (R — 9, 0°R) + L'R,,, — 59""[: =0

contracting this equation one gets

3C"R,R® +3L"0°R=L'R— 2L

The term g,, L is then given by
gyuL: — 2£,R;u/ k= 2L:”(‘F‘—,:y:l/ = g;u/EJQR) e % 2£I"(R:[.4R;u = gyugpaR:pR;a)-
Using the contracted equation in (28) one obtains
Tpe = 2gu,.,RL —3g,.L— 3£"g“vD2R —3L" g R.,R.*
E C”(R;p;u = g;u/DZR) -+ c’"(R:pR:V . gpuR;pR;p)
= gu(L'R— L)+ L' (R;p; — guuUZR)
+ L"(RuR. — Guv R p RY) (29)

Substituting for g, ., £ in equation (29) yields the following equivalent expression

1
P = 2C'(§g,,,,R =R LG PR — R y0)
+ L(gueR:pRY — RiuR:y) (30)

Equations (29.30) give a Lagrangian-dependent expression for the energy-momentum
tensor for the gravitational field . By choosing

L =—aR?+ BR , (31)

being the simplest non-linear Lagrangian density which represents the most
rational form, (29) yields

Do = _gyu(aRz) e 2':"(12:;4;11 = gpuDZR)' (32)

7
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In this expression the terms with the coefficient @ are assumed to represent the
contribution of the strong gravitational field which in the case of weak gravity
is set to zero. Therefore for the weak field, £ = R equation (29) gives 7}, = 0.
Also in the case of free space equations (30) and (31) reduce to

|
Tyv = 2(59#1'12 —Ruu) =0 (33)

The vanishing of 7},,, can also be obtained from contraction of GFE for linear
Lagrangian to get R = 87GT; = 0 outside the source, and for £ = R equation
(28) reduces to
Tpu = 2gpuR =3 39[JVR = _g;n/R =0

It is also noticed that the linear terms with the coefficient 3 canceled out in (32)
and only the non-linear terms contribute to the energy-momentum tensor, thus
when linear term only exists in the Lagrangian « = 0. In this case equation
(32) gives T,,,, = 0 this may explain why GR which is derivable from £ = R
predicts zero energy in contrast with other field theories [8,9.10].

Im. THE HAMILTONIAN IN THE NEWTONIAN LIMIT

To see how does the expression for the energy-momentum tensor satisfy the
Newtonian limit, we shall consider the Hamiltonian density H given by equations
(21) and (28) in the form

oL oL
- —TO — afs SIS T il P N
H 0 L+ (do- 88(,09,“, dog“ aa()g“,, d()g,_‘
gL .
R -

or equivalently
H=-Ty=3L—-—2CL"'R+4AL"T*R — L"¢g" R,
+£" (49" R.,,R.c — "' RY) (35)

It is clear that 7'} has the dimension of an energy density. Further the conser-
vation of T, is given from equation (12) as

dxr L
for A =0 " el - -
9T _ Y s Ty [ 9Ty | 9T (36)
Oxr ox? ozt dx? ox3
where
20 =ct, ' =z, 22 =y, and 23 =2
If we set
St = —cTy, S? =—cT%, S® =—cT5 (37)
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Then equation (12) reads

oH

5t (38)
This equation represents the equation of continuity [18], where S is the energy
flux density and the momentum of the system is given by

(43

p =—L%.

C

(39)

We conclude that T, represents the energy-momentum four-vector and that the
dimensional analysis as well as the continuity equation indicates that the four-
vector T§ in equation (28) represents the components of the energy-momentum
tensor

A. The Energy of a Static Isotropic Gravitational Field

Let us look for the form of the Hamiltonian density H in a static gravitational
field of a spherical body of mass M. The field generated by this body is described
by static isotropic metric which has the following form

grr = A(T), goo =12, gss = r’sin’0, gu = —B(r)

Considering the case of a particle moving in static weak field, the geodesic
equation yields[]

M
B(r) =1+ 29, and¢=_l G (40)
with ¢ the Newtonian potential. The scalar curvature R is thus given by
ey ¥ BY_A 2
- 2AB 4AB\ A B rA2 2
. —A 5 B % 2
rA A B r2A
. B B ( A B\, B
2AB 4AB\ A B | rAB
B i 2B B A i B
~ AB rAB 2AB\A ' B
24 2. 2
- (41)

it + s
rA2 r2  r24
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The function A(r) in the expression of R can be found from equation the static
solution of the GFE to be ]

[—r& (5]
T2 )
_JEVB- 50+ F)]

& —r22- 5§

A(r) =

(42)

where g 7
= — - — ). 4:
¢=3(r-35) (43)
when one is outside the source
s Dy
V:B=B+ ~B=0.
In this case A(r) becomes
51+ 5)]
[F —r22 -5

The most simple non linear Lagrangian for static isotropic metric may be chosen
to have the form

A(r) = (44)

L=—aR?+BR+~, L'=—2aR+ 8
L'=—2a, L=0 (45)

as a result £ takes the form

1 c
&= §(R'2c')
=

B [R_ (—aR2 + BR+7)
T3 —4aR + 23

(46)

By assuming o as characteristic to the strong field then the terms proportional
to a are negligible for the weak field, therefore

I
f= R (47)

Using equation (44) together with equation (47) and setting k = ~/3 yields

1 B 2B R—k
=-=-2(2-1) (%) R

on the other hand from (40) one gets

B+Br=1
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To simplify the calculation it is convenient to define a function z by

B A 2

B s e,
r2A° r2A2 r3A* A2
Substituting this in equation (41) and taking into account that at a sufficiently
large distance from the gravitating source

=7r2: 4 2rz. (49)

o—

B 2B | A
aBtrap=aBY 2=0
this yields
Br2 Br B2p2 2
— = R TUt L Z — — |
R"(2B +2r)z+(B 552 +6) = (50)

Then substituting the above expressions in equation (48) one gets

oo B BE 3B
o2 6 Br

B /2B 3 Br2+2' s Br BQT2+6 2
&\ B S = B 2B2 S L

Rearranging this equation we have

a(r)z(r) + b(r)z(r) = e(r) (51)

where
Br2 1 B
Hi= ( 2B +2"‘) (; g ﬁ)
1 B Br B2p2 3B
By =il £ s bt
(r) (r 23) (B 28?2 +6)+Bz
and , )
2B 2 1 B
S} e S ) R 5
e(r) = (r23+7‘3) +A<7‘ 23). (52)
Multiplying both sides of (51) by the integrating factor p yields
: b c =
uz+uzz—uz. (53)
If p is selected such that
dpz . —— b pe -
-—J;-_/Lz—f-/tz_yz—f—paz_ = (54)

Then g = pub/a and hence

Inpg =c¢; + / 2d-r'
a
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/1.=(328f Sadr (55)
d : & 1
ﬁ=£,andz=c—3+—/gd‘r (56)
dr a 7’ 7 a

where ¢;, ¢3, c3 are integration constants.
To obtain g let us simplify the ratio % from (52) as follows

2_—% %4-27‘) 3%r+6
a -’%gl + 2r -5—2’%;: +2r
+12— - s -
(2B — Br)(Br +4B)
i.e. N g x
b B 6(B: 2B B
LN i) NV (57)
a B r(Br + 4B) (2B — Br)(Br + 4B)
On the other hand MG QMG
B=1-—"—"Z-,B="{,
r r

2B + Br = —2-(r — MG), 4B + Br = g('r — 3MQG)
r T

and 2B — Br = é(r — 3MGQG),

Hence by substitution we get

B T r@2r—3MG) T (r—3MG)(2r — 3MG)

b B 6(r—MG) 6MG
a

The second and third terms can be factorized to get

6(r— MG) 2, 2
r(2r—3MG) r (2r-3MG)
6MG N —4 % 2
(r—3MG)(2r —3MG) (2r —3MG) (r-3MG)
b B9 2 2
—=—— - = + ,
a B r (2r-3MG) (r—3MQG)
Hence
b
/adr = —/dlnB + 2 /dln-r - /dln(?r —3MQG) + Q/dln('r —3MG)
i b 2(r —3MG)?
reLr— 1Cx
/ 2= e —oME) (38)
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Substituting (58) in (55) yields

cor?(r — 3MG)?

#(r) = —por —3MaG) (59)
Similarly ¢/a can be simplified using the following set of equations
e _ 83(;’% + B) . __ 2kB
a 713(2B— Br)(Br+4B) r(Br+4B)
e c 2B kB
a ~ r(r—3MG)(2r —3MG) | (@r —3MQ) 58]

Multiplying both sides by pu(r) yields
pe  2cor(r —3MG) | cokr®(r — 3MG)?

a  (2r—3MG)? (2r — 3MG)?
In order to integrate this expression we introduce the following substitutions
1 1
n=2r—-3MG, r= 5(1} +3MG), dr = §d7) (61)

, and therefore,

/;md » (12 (n+ 3A-IG)§7) — 3MG) 0
a n
(*Qk (n+3MG)*(n— 3A[G)2

e
o 9C2M202 dr; C2A (n* — 18M3G%n? + 811\1404)
—_— dn —_——_—
4 4 7)2 7>
2 9(32 A1262 C2k 3 9(32]\"[2G2k 8162AI4G4I€
= —n+ =+ N n— :
4 4n 96 16 32n
ie. 5
/‘ He 4. cak(2r — 3MGY)
a 96
+(32(4 —9M32G?k)(2r — 3MG) i IM32G2c,(8 — IM2G?k) (62)
16 32(2r — 3MQG)
Combining equations (56),(59) and (62) yields
B(2r —3MQG) .c k(2r —3MG)?
r2(r —3MG)? "¢ [ 96
(4— 9AVI2G2L)(2r —3MG)
16
IM2G?(8 — IM32G?*k
( ) (63)

32(2r — 3MG)
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Dividing the numerator and the denominator by r* we get

I oh e BT W ) ol o T M W (1 D
(1 i3 34\"{6 )2 o r3 96

_ B(2 — 3MQ) [c;; 1k 3MG

ISSN 2348 - 8034

i [(4 — 9M2G2k) [ 2 3MG) IM2G2(8 — 9M2G2k)]

16 r2
but

32r3(2r — 3MG)

IAI2G2

(2 . 3J\IG) ( 12M G 9]\12G2) ( 12MG %

96MG ~ 216M2G? 216 M3G3
=16 — + -

ey

81M*GH
s :

r r2 r3

and when r is sufficiently large the terms 71_;-, ;1; can be neglected comparec

1/r and 1/72 in the numerator and this gives

B k 96 MG 216 M 2G>2
(4 — 91\!2G2k) 3MG 2 ]
iz ok
16 X
. B k 16 96M G " 216 M2G? L 1 IM3G?k
= (1 e 4&!(“)2 96 r2 r2 472
* k _ kMG , 9IM*G3k 1 _ OM2G%k e
L e ke s e e . T
B (1 _ 3MG )2

Far away from the source then the denominator becomes

MG 2
(1_31[@') S,
r

and our expression reduces to

k kMG 1
Z—(——T-i-r—)B

Using the definition (49) one gets

1 _k_kMG 1
r2AB 6 r 64 r2
1 kr

(64)

(65)

(66)
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When k=0, 1/AB = 1, this represents Schwarzchild solution [19]. By further
approximation in equation (65) and dropping terms of the order 1/r, 1/r? on
the right hand side we get

===, (67)

Equation (66) can also be used to find

( ) (% — EMGr + 1) (_ . kﬂ[(") (68)

Equation (66) together with equations (67) and (68) and the identity

B+ ? = V2B = 2V2%¢ = 87Gp (69)

can be used in equation (41)to get

R = 87Gp . B 2 e 2
'~ AB ' 2B A2 2B AB r2 | r2A
= 8nGp (l—i———kJ\IGr) + — —kAIGr+1)
+ B(__kguc (——kAIGr+1)
+ 2B (ﬁ — kMG + 1) +2B (5 - kMG)
6 3 T
2 .k
- —=+ =-B. 7
= + 3 (70)
By setting
kr?
and using
1/AB=(14+p) and B=1-2MG/r =1+ 29,
ie. MG
B="—=2V¢
r
aud 2MG
Bkr = L— = k(1 — B).
and also
SV 1262
_2leIGB . B8 (_2.’\IG) 2 4M 2(“' k
r ¥ r
122
= kB—-—k+ 41‘11‘# (72)
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we then obtain
Bbe . A Simen
2 r 2

2AIGI;B — % + kB
r

R =8nGp(1 + p) +

y 3
k 2B 5

k Eoum o
=8xGp(l+p)+ 5 — 5B+ == — SkMGB + kB

AM2G?k 2
kt —s— — =
r

= +kB.

Neglecting terms of order ;15, ;l-; «ee.e.... the scalar curvature becomes simplified

to read

k -
R =8nGp(l + p) — ) + ng

= 87Gp(1 + p) + k + 3ko. (73)
Differentiating both sides with respect to r and assuming p to be constant one
gets )
R = 8nGpp + 3kV ¢ (74)
and using the fact that k = /3 in equation (48) and setting 8 = 1/167G
together with equations (73) and (74) it follows that

| PO o 1), N 5
3,BR Se— ¥ 3 e (75)
and :
aB . ;
ER =2a(1+ p)(Vo)(8nGlp + 3kV @)
- ‘%’(Vé)z + 60‘%(%)2 + 167G a(l + p)pVé. (76)

Further, the Hamiltonian H can be found from equations (35) and(45) to be
H=3L—-2L'R+AL'"0°R— L"¢" Ry + L"(4¢”° R.,R., — "' R%)
If we set
L=—aR?+ BR+~,

that means
L =—-2aR+ 8, L =—2a ,and L =0

therefore )
aB .
B’
This expression can be simplified by using the contracted form of the GFE ( see
the equation just after (28) i.e.

3C"R,R* +3L"0°R=L'R-2L

H = aR?*+ BR+ 3y —8a0’R + (77)
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which yields

8a[2R = %,912 + 2%

The Hamiltonian will then be given by

1 aB .
3 aBh ()
In a weak field limit R? can be neglected compared to R and the Hamiltonian

becomes

1
H =aR?— 3R+3"}’+

1 1 . aB,

To obtain H in the static limit we make use of equations (75) and (76) in
equation (79)

W ) [ 8 Y 4 827 g 4)2
H= 5 3~ 1¢+3+ 3 (Vo)
+M77y(v¢)2 + 167Ga(l + p)apVo
If we substitute 52
n, | 1
¥ =cp Q—T, and 3 e (80)
where ¢ is a certain constant, then we will have
= — — \v4

H=—o —pd+ 871,G( &)

3np 2 . .
P 1 1 ;

+87rG (Vo) + 167Ga(l + p)ppV o

by setting

o= and, n =

£
18

S| =

the expression of the Hamiltonian becomes

_ 1 . (V9)? n(Vo)? , Bt
H= 6 (p-i—pcp e ) + TYre + 167Ga(l + p)apVo (81)

The first term in this expression is proportional to the expression which rep-
resents the Hamiltonian in a Newtonian limit [20,21]. This indicates that our
expression (35) for the Hamiltonian satisfies the principle of correspondence . It
is important to note that when the Lagrangian £ contains no quadratic terms
i.e. @ = (0 and by (80) n = 0 then the expression for the gravitational en-
ergy disappears from this Hamiltonian. This indicates that the existence of the
gravitational energy depends on the existence of the quadratic term in the La-
grangian or equivalently the gravitational energy exists only when the quadratic
term aR? is included in the Lagrangian. This supports the afore-noted conclu-
sion that the failure of GR to give a well defined expression for the energy of
the gravitational field is due to its being derived from the linear Lagrangian .
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B. The Quasi -Minkowskian Approximation

The Newtonian limit can also be obtained by using quasi-Minkowskian approxi-
mation [14], where the metric g,,,, approaches the Minkowskian metric 7, when
we consider the field of a far away point from the source. In this case g,.,can
be written as in the form

Gpv = TNuv =+ h;u/ (82)

where |h,.| < 1. It follows that the first order part of the Ricci tensor which is
linear in h,, is given by

RO = L d?h) O*h;, hy | O%hux
2\ 9xrdx= Ox Oz~ Oz OxH = Ir Oxx

) (83)

The second order part of the Ricei tensor R is given by

0%hy,, 9%h,, (92]1,\,; i | I

R(Z_) iier,_ } Au[ u“ o ]
P 2 dx=OxH B.E"(')x" oxvoxH az"d.r"
l[th OhY, ][ hy, Bh‘; L& Bh,m]
45 Oxv ox® da:'* d;r*‘ oz

1.0k  Ohyx  Ohy;: Ok Sh7 dh)‘

o T O T OB )

In the case of a weak and static field

hoo = —2¢(r) (85)

where ¢ is the Newtonian potential . Considering the time-time components
of h,. corresponding to the Hamiltonian density which represent the zero-zero
component of the energy-momentum tensor, then the first and the second part
of the Ricci tensor yield

(84)

R(()},) e 1 ( A%h B 52hl B 9?h 92 floo )
2°9z%9z° 9x*9x° 9x*9x°  Oxidx;
a _ 1, 8*hd | _ 18%hoo
ROO wee 2 ( 7’ii8$i2 ) ~ 2 axiz (86)
where i e e
00 _ o _ i) IR
oz % Ox° % Ax0 ¢
and . .
RY _ ( *hy  *hi °h; P hii
= 2'9zrigzt  9r2  9x2 ' Jxr Oxy
% & hy 102 n°°hoo o ?hoo
i 2( dx oaz) = oriz =~ 2 9ri2 (87)
with B
7]00 — —l, 'I)" =1 (88)
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Hence the first order part will be given by
1 62’100 1 821100

2 9xi2 2 9xri2

RrM — nooR(()%)) i niiRS) 2
and
RW = _V2hoo = 2V3¢ = 87Gp (89)
The components of the second order part are given by
3?hoo ]+ l[_ 6h8][_ dhoo
dx¥ x> 4" 9Oxt Ix;
4" 9x* 't Ox; 4" 9xt " Ox;

2 1. 5.
Rt()o) == _Eh'\ [

(90)
i.e.

82’10()

[ g P hgo 1 .91°°h Ihoo
Ox92

00

dxt2 4 dxt ][077,-,-1“]
1 _Ohgo, On°hgo 1 _Ohgg, ONn°Chgo

_:1-[ ozt Il Oniixt - Z[ ozt Il Ozt ]

. 1 ahoo 1 ma i | ma 2

=—3te) tile) il

= 1( G0y = 2(Vhoo)® = (Vo)? (91)

'k ]
Rgy = —5h* SHeT 1+

¥+ )k

and

2 _ 1,00 Phoo, 1 dhoo Oh"
e = 2h ( dxt? 4 9zt ( oxt )

N 7]m7]00h00 ( 82’100 ) _ }_( (91100 )(anml)oohoo )
2 dx? 4" 9zt ort
. —@ 62’100 _ l(ahm 2
2 9z 4" gaf )
Po 96,
= ~262 5 — (52) (94)

Hence the second order part of R becomes

(92)

(93)

Pé i, 09

(2 — ,00p2) ip(2) _ _ N2 ii S T
R N Ry + 0" R;; (V9)* —20m" o= — n"(53)

= —(Ve)* —26(Ve)’ — (Vo)*
= —2(V¢)? —8xGpo (95)

The scalar curvature R is then given by

R=R®M 4+ R® =8xGp — 2(V¢)? — 8xGpd (96)
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using the Hamiltonian in equation (79) with
R = —4(V¢)(V?¢) — 87Gp(Ve) (97)
and )
R = —247Gp(V o). (98)

also as
Goiwr-—> Npuy-A—> 1, and B — 1,

then H becomes

H = —3BR+ 37+ 2a(V6)*(—24nGp)

T G(Srer — 2(Vo)? — 87Gpod) + 37 — 487G ap(Ve)?

Setting v = ¢p, a = nB?/y we get
2(Vo)?
887G

By using natural units ¢ = 1, one obtains

2(V¢)2] 3n
8nG 167G

s (Vo)?

1
= —glppp— 3P~ 161rGr

(Ve)?

H= %[p + pd +
If we choose n = 1/3 then

- ! . (Vg)?
= 6[P+ po m] (99)

This agrees with the expression of the Hamiltonian of matter in the presence
of the gravity field which again confirms our belief that the absence of a well
defined expression for the gravitational energy in GR is caused by its being

based on a linear form of the Lagrangian. And thus this conclusion throws light
on one of the limitations of Einstein’s model of gravitation.

IV. CONCLUSION

In section (2) a useful expression for the energy-momentum tensor of the grav-
itational field is obtained, which is given by equations (28), (29) and (30). It
was shown that the energy momentum tensor vanishes when the Lagrangian
is linear and this may explain why GR does not possess a non-zero expression
for the gravitational energy outside the source. In the weak field limit, when
static isotropic metric is considered, the Hamiltonian consists of matter energy,
gravity energy and interaction energy. The same result is obtained by using
quasi-Minkowskian metric, thus the energy momentum satisfies the Newtonian
limit, i.e in the weak field limit it gives Newtonian energy of the matter and
gravitational field.
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